8. [12 points] A portion of the graph of a function f is shown below.

a. [2 points] Give all values c in the interval $0<c<10$ for which $\lim _{x \rightarrow c} f(x)$ does not exist. If there are none, write NONE.

$$
\text { Answer: } c=\quad 1,8
$$

b. [2 points] Give all values c in the interval $0<c<10$ for which $\lim _{x \rightarrow c^{+}} f(x)$ does not exist. If there are none, write NONE.

Answer: $c=$ \qquad
c. [2 points] Give all values c in the interval $0<c<10$ for which $f(x)$ is not continuous at c. If there are none, write NONE.

$$
\text { Answer: } \quad c=\quad 1,3,8
$$

d. [6 points] With f as shown in the graph above, define a function g by the formula

$$
g(x)= \begin{cases}\frac{B+2 x^{2}+3 x^{3}+A x^{5}}{12+6 x^{3}+4 x^{5}} & \text { if } x \leq 0 \\ f(x) & \text { if } 0<x<10\end{cases}
$$

where A and B are nonzero constants.
Find values of A and B so that both of the following conditions hold.

- $g(x)$ is continuous at $x=0$.
- $\lim _{x \rightarrow-\infty} g(x)=\frac{1}{2}$.

If no such values exist, write NONE in the answer blanks.
Be sure to show your work or explain your reasoning.
Solution: To satisfy the first condition, we first compute $g(0)$ by plugging in $x=0$ to the rational function $\frac{B+2 x^{2}+3 x^{3}+A x^{5}}{12+6 x^{3}+4 x^{5}}$ to find $\lim _{x \rightarrow 0-} g(x)=g(0)=\frac{B}{12}$. In order for $g(x)$ to be continuous at $x=0$, we must also have $\lim _{x \rightarrow 0^{+}} g(x)=\frac{B}{12}$.
Now $\lim _{x \rightarrow 0^{+}} g(x)=\lim _{x \rightarrow 0^{+}} f(x)=-1$ (from the graph), so $\frac{B}{12}=-1$, and $B=-12$.
To satisfy the second condition, we compute that

$$
\lim _{x \rightarrow-\infty} g(x)=\lim _{x \rightarrow-\infty} \frac{B+2 x^{2}+3 x^{3}+A x^{5}}{12+6 x^{3}+4 x^{5}}=\frac{A}{4} .
$$

In order for this limit to equal $\frac{1}{2}$, we must have $A / 4=1 / 2$, so $A=2$.
Answer: $A=$ \qquad and $B=$ \qquad Fall, 2015 Math 115 Exam 1 Problem 8 Solution

