1. [10 points] Laquita decides to visit an amusement park during Fall Break and rides several roller coasters, including the Classic Amazing Looping Coaster and the Ultra Mountain.
Let $R(t)$ be the distance, in feet, that the CAL Coaster has moved along the track t seconds after the ride begins. The ride lasts a total of 60 seconds. Several values of $R(t)$ are shown in the following table.

t	0	10	25	30	40	45	55	60
$R(t)$	0	496	1103	1327	1817	2136	2718	3141

For parts a.- c., remember to show your work and reasoning clearly.
a. [2 points] Find the average velocity of the CAL Coaster during the last 15 seconds of the ride, i.e. for $45 \leq t \leq 60$. Include units.

Answer:

b. [2 points] Estimate the instantaneous velocity of the CAL Coaster 30 seconds after the ride begins. Include units.

Answer: \qquad
c. [2 points] Estimate $R^{\prime}(55)$.

Answer: $R^{\prime}(55) \approx$ \qquad
d. [4 points] Let $h(t)$ be Laquita's height, in feet, above the ground, t seconds after her ride on the Ultra Mountain begins. A graph of $h(t)$ is shown below.

Let the quantities I-V be defined as follows:
I. The number 0 .
II. Laquita's instantaneous vertical velocity, in $\mathrm{ft} / \mathrm{sec}$, at $t=14$.
III. $h^{\prime}(32)$
IV. Laquita's average vertical velocity, in $\mathrm{ft} / \mathrm{sec}$, between $t=14$ and $t=42$.
V. Laquita's instantaneous vertical velocity, in $\mathrm{ft} / \mathrm{sec}$, at $t=67$.

Rank the quantities in order from least to greatest by filling in the blanks below with the options I-V. You do not need to show your work.
\qquad
\qquad $<$ \qquad $<$ \qquad $<$ \qquad

