3. [10 points] The entire graph of a function q is shown below. Note that $q(x)$ is linear on the interval $1<x<2$.

Throughout this problem, you do not need to explain your reasoning.
For each of parts a.- c. below, circle all of the listed values satisfying the given statement. If there are no such values, circle none.
a. [2 points] For which of the following values of a does $\lim _{t \rightarrow a} q(t)$ exist?

$$
\begin{array}{lllll}
a=-2 & a=-1 & a=0 & a=1 & \text { NONE }
\end{array}
$$

b. [2 points] For which of the following values of b is $q(x)$ continuous at $x=b$?

$$
\begin{array}{lllll}
b=-2 & b=-1 & b=0 & b=1 & \text { NONE }
\end{array}
$$

c. [2 points] For which of the following values of c is $\lim _{x \rightarrow c^{+}} q(x)=q(c)$?

$$
\begin{array}{lllll}
c=-2 & c=-1 & c=0 & c=1 & \text { NONE }
\end{array}
$$

For each of parts \mathbf{d}. and \mathbf{e}. below, if the limit does not exist (including the case of limits that diverge to ∞ or $-\infty$), write DNE.
d. [2 points] Evaluate the following expression: $\lim _{k \rightarrow 0} \frac{q(1.21+k)-q(1.21)}{k}$.

Answer:
e. [2 points] Evaluate the following expression: $\lim _{s \rightarrow-1} q(q(s))$.

