2. [13 points] After Blizzard left Arizona, Gabe the mouse found a large globe (a sphere) to climb. The globe has a diameter of 40 inches and it is attached to a 12 -inch-long pole. Gabe starts at the base of the pole at point P. He climbs up to the bottom of the globe at point Q. He then climbs the globe along a semicircle until he stops at the top of the globe at point R (see the diagram below). Note that the diagram is not drawn to scale.

a. [8 points] Assume that Gabe walks through the path at a velocity of 3 inches per second. Let $G(t)$ be Gabe's height above the ground (in inches) t seconds after he started his climb at point P. Find a piecewise-defined formula for $G(t)$. Be sure to include the domain for each piece.

b. [5 points] After climbing the globe, Gabe jumps onto a small ferris wheel. Let $H(t)$ be his height, in inches, above the ground t seconds after Gabe jumped, where

$$
H(t)=12+9 \cos \left(\frac{\pi}{75}(t-120)\right) .
$$

Find the the smallest positive value of t at which Gabe's height above the ground is 10.5 inches. Clearly show each step of your algebraic work. Give your answer in exact form.

Answer: $t=$ \qquad
3. [5 points] Let

$$
B(k)=e^{-4 k^{2}} \tan (k+3) .
$$

Use the limit definition of the derivative to write an explicit expression for $B^{\prime}(5)$. Your answer should not involve the letter B. Do not attempt to evaluate or simplify the limit. Please write your final answer in the answer box provided below.

Answer: $B^{\prime}(5)=$

