2. [13 points] After Blizzard left Arizona, Gabe the mouse found a large globe (a sphere) to climb. The globe has a diameter of 40 inches and it is attached to a 12-inch-long pole. Gabe starts at the base of the pole at point $P$. He climbs up to the bottom of the globe at point $Q$. He then climbs the globe along a semicircle until he stops at the top of the globe at point $R$ (see the diagram below). Note that the diagram is not drawn to scale.

a. [8 points] Assume that Gabe walks through the path at a velocity of 3 inches per second. Let $G(t)$ be Gabe's height above the ground (in inches) $t$ seconds after he started his climb at point $P$. Find a piecewise-defined formula for $G(t)$. Be sure to include the domain for each piece.

Solution: From point P to Q: It takes the ant 4 seconds to climb 12 inches at a velocity of 3 inches per second. During that time, the ant climbs at a constant rate of 3 inches per seconds starting at the floor, hence $G(t)=3 t$ for $0 \leq t \leq 4$.

From point Q to R : The distance $L$ along the semicircle traveled by the ant is $L=\frac{1}{2}(2 \pi R)$, where $R$ is the radius of the circle. In this case $R=20$ inches, then $L=20 \pi$. Hence it takes the ant $T=\frac{L}{3}=\frac{20 \pi}{3}$ seconds to go from point Q to R a t a velocity of 3 inches per second. Its height is given by a sinusoidal function with midline at $k=12+20=32$, amplitude $A=\frac{1}{2}(40)=20$, period $P=2 T=\frac{40 \pi}{3}$ and a minimum at $(4,12)$. Hence $G(t)=32-20 \cos (B(t-4))$. The constant $B=\frac{2 \pi}{P}=\frac{2 \pi}{\frac{40 \pi}{3}}=\frac{3}{20}$ for $4 \leq t \leq 4+T$. Hence

$$
G(t)= \begin{cases}3 t & \text { for } \quad 0 \leq t \leq 4 \\ 32-20 \cos \left(\frac{3}{20}(t-4)\right) & \text { for } \quad 4 \leq t \leq 4+\frac{20 \pi}{3}\end{cases}
$$

b. [5 points] After climbing the globe, Gabe jumps onto a small ferris wheel. Let $H(t)$ be his height, in inches, above the ground $t$ seconds after Gabe jumped, where

$$
H(t)=12+9 \cos \left(\frac{\pi}{75}(t-120)\right) .
$$

Find the the smallest positive value of $t$ at which Gabe's height above the ground is 10.5 inches. Clearly show each step of your algebraic work. Give your answer in exact form.

Solution:

$$
\begin{aligned}
12+9 \cos \left(\frac{\pi}{75}(t-120)\right) & =10.5 \\
\cos \left(\frac{\pi}{75}(t-120)\right) & =-\frac{1}{6} \\
\frac{\pi}{75}(t-120) & =\cos ^{-1}\left(-\frac{1}{6}\right) \quad t_{0}=120+\frac{75}{\pi} \cos ^{-1}\left(-\frac{1}{6}\right) \\
\text { (smallest positive) } \quad t_{\text {ans }} & =t_{0}-P=\frac{75}{\pi} \cos ^{-1}\left(-\frac{1}{6}\right)-30 .
\end{aligned}
$$

where the period of $H(t)$ is $P=\frac{2 \pi}{\frac{\pi}{75}}=150$.

