2. [13 points] After Blizzard left Arizona, Gabe the mouse found a large globe (a sphere) to climb. The globe has a diameter of 40 inches and it is attached to a 12-inch-long pole. Gabe starts at the base of the pole at point P. He climbs up to the bottom of the globe at point Q. He then climbs the globe along a semicircle until he stops at the top of the globe at point R (see the diagram below). Note that the diagram is not drawn to scale.

Complete path: $PQGR$

a. [8 points] Assume that Gabe walks through the path at a velocity of 3 inches per second. Let $G(t)$ be Gabe’s height above the ground (in inches) t seconds after he started his climb at point P. Find a piecewise-defined formula for $G(t)$. Be sure to include the domain for each piece.

Solution: From point P to Q: It takes the ant 4 seconds to climb 12 inches at a velocity of 3 inches per second. During that time, the ant climbs at a constant rate of 3 inches per seconds starting at the floor, hence $G(t) = 3t$ for $0 \leq t \leq 4$.

From point Q to R: The distance L along the semicircle traveled by the ant is $L = \frac{1}{2}(2\pi R)$, where R is the radius of the circle. In this case $R = 20$ inches, then $L = 20\pi$. Hence it takes the ant $T = \frac{L}{3} = \frac{20\pi}{3}$ seconds to go from point Q to R at a velocity of 3 inches per second. Its height is given by a sinusoidal function with midline at $k = 12 + 20 = 32$, amplitude $A = \frac{1}{2}(40) = 20$, period $P = 2T = \frac{40\pi}{3}$ and a minimum at $(4,12)$. Hence $G(t) = 32 - 20 \cos(B(t - 4))$. The constant $B = \frac{2\pi}{P} = \frac{2\pi}{\frac{40\pi}{3}} = \frac{3}{20}$ for $4 \leq t \leq 4 + T$. Hence

$$G(t) = \begin{cases}
3t & \text{for } 0 \leq t \leq 4, \\
32 - 20 \cos\left(\frac{3}{20}(t - 4)\right) & \text{for } 4 \leq t \leq 4 + \frac{20\pi}{3}
\end{cases}$$
b. [5 points] After climbing the globe, Gabe jumps onto a small ferris wheel. Let $H(t)$ be his height, in inches, above the ground t seconds after Gabe jumped, where

$$H(t) = 12 + 9 \cos\left(\frac{\pi}{75}(t - 120)\right).$$

Find the smallest positive value of t at which Gabe’s height above the ground is 10.5 inches. Clearly show each step of your algebraic work. Give your answer in exact form.

Solution:

\[
12 + 9 \cos\left(\frac{\pi}{75}(t - 120)\right) = 10.5
\]

\[
\cos\left(\frac{\pi}{75}(t - 120)\right) = -\frac{1}{6}
\]

\[
\frac{\pi}{75}(t - 120) = \cos^{-1}\left(-\frac{1}{6}\right)
\]

\[
t_0 = 120 + \frac{75}{\pi} \cos^{-1}\left(-\frac{1}{6}\right)
\]

(smallest positive)

\[
t_{\text{ans}} = t_0 - P = \frac{75}{\pi} \cos^{-1}\left(-\frac{1}{6}\right) - 30.
\]

where the period of $H(t)$ is $P = \frac{2\pi}{75} = 150$.

University of Michigan Department of Mathematics

Fall, 2017 Math 115 Exam 1 Problem 2 (globe) Solution