9. [9 points] Consider the rational function r defined by

$$
r(x)=\frac{3(x-\sqrt{2})(\pi x+7)^{2}(x+1)}{(x+1)(x-\sqrt{3})} .
$$

For all of the following parts of this problem, leave your answers in exact form.
a. [2 points] What is the domain of $r(x)$?

$$
\text { Solution: } \quad x \neq-1, \sqrt{3} .
$$

b. [2 points] Find the equations of all vertical asymptotes of $r(x)$. If there are none, write nONE.

$$
\text { Solution: } \quad x=\sqrt{3}
$$

c. [2 points] Let $p(x)=3 x^{2}+1.2 x-5$. Find the equations of all horizontal asymptotes of $\frac{r(x)}{p(x)}$. If there are none, write nONE. Show your work or reasoning to justify your answer.
Solution: Since $\frac{r(x)}{p(x)}=\frac{3(x-\sqrt{2})(\pi x+7)^{2}(x+1)}{(x+1)(x-\sqrt{3})\left(3 x^{2}+1.2 x-5\right)}$. Then its horizontal asymptote(s) can be found by finding

$$
A=\lim _{x \rightarrow \infty} \frac{3(x-\sqrt{2})(\pi x+7)^{2}(x+1)}{(x+1)(x-\sqrt{3})\left(3 x^{2}+1.2 x-5\right)} \quad \text { and } \quad B=\lim _{x \rightarrow-\infty} \frac{3(x-\sqrt{2})(\pi x+7)^{2}(x+1)}{(x+1)(x-\sqrt{3})\left(3 x^{2}+1.2 x-5\right)} .
$$

In order to find A and B, we need to notice that the leading terms of $3(x-\sqrt{2})(\pi x+7)^{2}(x+$ $1)$ and $(x+1)(x-\sqrt{3})\left(3 x^{2}+1.2 x-5\right)$ are $3(x)(\pi x)^{2}(x)=3 \pi^{2} x^{4}$ and $(x)(x)\left(3 x^{2}\right)=3 x^{4}$ respectively. Hence $A=B=\pi^{2}$. Then the horizontal asymptote of $\frac{r(x)}{p(x)}$ is $y=\pi^{2}$.
d. [3 points] If $q(x)=\frac{2 e^{k x}}{1+2^{x}}$, find all values of k so that $\lim _{x \rightarrow \infty} q(x)=0$. If there are none, write none. Show your work or reasoning to justify your answer.

Solution: In order for $\lim _{x \rightarrow \infty} q(x)=0$, the function $y=2^{x}$ must dominate $y=e^{k x}$. This is true if the growth factor of $y=2^{x}$ is larger than the one of $y=e^{k x}$. Hence we are looking for the values of k such that $2>e^{k}$. Hence $k<\ln (2)$.

