1. [11 points] Brianna rides her unicycle north from her home to the grocery store and back again. The differentiable function r(t) represents Brianna's distance in meters from her home t minutes after she leaves the house. Some values of r(t) are shown in the table below.

t	0	1	5	7	10	12	14	16	17
r(t)	0	180	1050	1420	1425	980	570	220	0

a. [2 points] What was Brianna's average velocity between times t = 7 and t = 12? Include units.

Solution: Average velocity $= \frac{980 - 1420}{12 - 7} = \frac{1}{5} = -88$ Answer: -88 meters per minute.

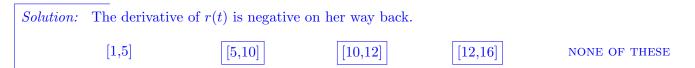
b. [2 points] Approximate the value of r'(14). Include units.

Solution:
$$r'(14) \approx \frac{220 - 570}{2} = -175$$
 Answer: -175 meters per minute.

c. [3 points] For which of the following time interval(s) is it possible for r(t) to be concave up on the entire interval? Circle all correct choices.

Solution: Computing average rate of changes in consecutive subintervals we see that

Intervals	[1,5]	[5,7]	[10, 12]	[12, 14]					
Average rate of change	$\frac{870}{4} = 217.5$	$\frac{370}{2} = 185$	$-\frac{445}{2} = -222.5$	$-\frac{410}{2} = -205$					


Since the average rate of change only increases on [10, 14], then it is possible that r(t) is concave up on [10, 14].

Use the following additional information about Brianna's ride to answer the questions below:

- The grocery store is 1430 meters away from Brianna's home.
- It takes Brianna 8 minutes to get to the store.
- On her way to the store, Brianna does not stop at all. On her way back, she only stops once at a traffic light, which is 250 meters from her home.
- **d**. [2 points] For which of the following time interval(s) is r'(t) equal to 0 for some value of t in that interval? Circle all correct choices.

Solution: Based on the information given $r'(t) \neq 0$ on [1,5] and [10,12]. r'(8) = 0 since it takes 8 minutes to get to the store. Since she stops on her way back, then r'(t) = 0 for $14 \leq t \leq 16$. [1,5] [5,10] [10,12] [12,16] NONE OF THESE

e. [2 points] For which of the following time interval(s) is r'(t) negative for some value of t in that interval? Circle all correct choices.

