3. [6 points]
a. [4 points] For which value(s) of the constant A is the function

$$
R(t)= \begin{cases}5(13)^{A t} & \text { for } t<2 \\ 20-3 t^{2} & \text { for } t \geq 2\end{cases}
$$

continuous? Find your answer algebraically and give your answer in exact form. If no such value exists, write "DNE". Show all your work step by step.

Solution: The function $R(t)$ is continuous on $(-\infty, 2)$ and $(2, \infty)$. In order for $R(t)$ to be continuous at $t=2, R(t)$ has to satisfy $R(2)=\lim _{t \rightarrow 2} R(t)$. Since $R(2)=8=\lim _{t \rightarrow 2^{+}} R(t)$, then it is only necessary that $\lim _{t \rightarrow 2^{-}} R(t)=\lim _{t \rightarrow 2^{-}} 5(13)^{A t}=5(13)^{2 A}=8$. This yields

$$
\begin{aligned}
5(13)^{2 A} & =8 \\
13^{2 A} & =\frac{8}{5}=1.6 \\
2 A \ln (13) & =\ln (1.6) \\
A & =\frac{\ln (1.6)}{2 \ln (13)}
\end{aligned}
$$

Answer: $\quad A=\frac{\ln (1.6)}{2 \ln (13)}$
b. [2 points] A different function, $f(d)$, has the property that $\lim _{d \rightarrow \infty} f(d)=10$. What is the value of $\lim _{d \rightarrow \infty} 4 f(2 d-14)+9 ?$

Write "DNE" if the limit does not exist or "NI" if there is not enough information to answer the question. You do not need to show your work.

Solution: Since $2 d-14$ tends to infinity as d tends to infinity, then $\lim _{d \rightarrow \infty} f(2 d-14)=10$. Hence $\lim _{d \rightarrow \infty} 4 f(2 d-14)+9=4(10)+9=49$.

Answer: 49

