8. [10 points] Let A and B be positive constants. The rational functions $y=P(x)$ and $y=Q(x)$ are given by the following formulas:

$$
P(x)=\frac{5 x(x-2)(A x+1)^{2}}{\left(3 x^{2}+B\right)\left(x^{2}-9\right)} \quad Q(x)=\frac{P(x)(x-3)}{x-2}
$$

Your answers below may depend on the constants A and B and should be in exact form. You do not need to show your work.
a. [3 points] Find the zeros of the function $y=P(x)$. If P has no zeros write "NONE".

Solution: Setting $5 x(x-2)(A x+1)^{2}=0$ you get $x=0, x-2=0$ and $(A x+1)^{2}=0$. This yields $x=0,2$ and $-\frac{1}{A}$.

Answer: $x=0,2$ and $-\frac{1}{A}$.
b. [2 points] What is the domain of $P(x)$?

Solution: The only points not in the domain of $P(x)$ are the solutions to $\left(3 x^{2}+B\right)\left(x^{2}-9\right)=0$. Solving $x^{2}-9=0$ we get $x= \pm 3$. If we set $3 x^{2}+B=0$, we get $x^{2}=-\frac{B}{3}<0$. This is not possible for any value of x. Then the only solutions are $x= \pm 3$.

$$
\text { Answer: } \quad x \neq-3,3
$$

c. [2 points] Find the equation(s) of the horizontal asymptote(s) of $y=P(x)$. If it has no horizontal asymptotes, write "NONE".

Solution: To find the end behavior of $P(x)$ we need to find the leading coefficient of the numerator and the denominator. The leading term of the numerator is $5 x(x-2)(A x+1)^{2}$ is $5 x(x)(A x)^{2}=5 A^{2} x^{4}$. The leading term of $\left(3 x^{2}+B\right)\left(x^{2}-9\right)$ is $\left(3 x^{2}\right)\left(x^{2}\right)=3 x^{4}$. Hence $\lim _{x \rightarrow \infty} P(x)=\lim _{x \rightarrow \infty} \frac{5 A^{2} x^{4}}{3 x^{4}}=\frac{5 A^{2}}{3}$. This limit is the same as $\lim _{x \rightarrow-\infty} P(x)$.

Answer: $\quad y=\frac{5 A^{2}}{3}$
d. [3 points] If $A=1$, find the values of c where $\lim _{x \rightarrow c} Q(x)$ does not exist. If no such values of c exist, write "NONE".
Solution: $\lim _{x \rightarrow c} Q(x)$ exists for all c in the domain of $Q(x)=\frac{5 x(x-2)(A x+1)^{2}(x-3)}{\left(3 x^{2}+B\right)\left(x^{2}-9\right)(x-2)}$. Hence we need to check the limits at $c=-3,2$ and 3. At $c=2, \lim _{x \rightarrow 2} Q(x)=\frac{-2(2 A+1)^{2}}{B+12}$ and at $c=3, \lim _{x \rightarrow 3} Q(x)=\frac{15(3 A+1)^{2}}{6(B+27)}$ (both of these points are holes in the graph of $Q(x)$). At $c=-3, Q(x)$ has a vertical asymptote hence $\lim _{x \rightarrow-3} Q(x)$ does not exist.

Answer: $\quad c=-3$

