9. [11 points] A group of marine biologists are studying life in the Challenger Deep, the deepest known point in the world's ocean. They use a special submarine to take samples of sea water for their study. Let $S(t)$ be the depth of the submarine (in miles) t minutes after it started collecting sea water samples. In this problem, depth will always be a positive number.
a. [5 points] Find a formula for $S(t)$ assuming that:

- $S(t)$ is a sinusoidal function.
- The submarine rises in 4 hours from a maximum depth of 6 miles to half a mile below the sea level (the closest point it gets to the surface).
- The submarine reaches its maximum depth 30 minutes after it starts taking sea water samples.

Solution: We know that $S(t)$ has a maximum at $t=30$, then $S(t)=A \cos (B(t-30))+k$ with $A>0$. The amplitude of $S(t)$ is $\frac{6-0.5}{2}=2.75$. The period of $S(t)$ is 480 (8 hours) and its midline is $y=\frac{6+0.5}{2}=3.25$. Then $A=2.75, B=\frac{2 \pi}{480}=\frac{\pi}{240}$ and $k=3.25$.

Answer: $\quad S(t)=2.75 \cos \left(\frac{\pi}{240}(t-30)\right)+3.25$
b. [6 points] During a second expedition, the depth of the submarine (in miles) is given by the function

$$
D(t)=3+2.5 \cos \left(\frac{\pi}{90} t\right)
$$

where t represents the time in minutes after the submarine started collecting samples. Once the submarine reaches a depth of 4 miles for the first time, how much time passes before it is at a depth of 4 miles for the second time? Your answer must be in exact form. Show all your work and include units.
Solution: Setting $D(t)=4$ and solving for t :

$$
\begin{aligned}
3+2.5 \cos \left(\frac{\pi}{90} t\right) & =4 \\
\cos \left(\frac{\pi}{90} t\right) & =0.4 \\
\frac{\pi}{90} t & =\cos ^{-1}(0.4) \quad \text { then } \quad t_{1}=\frac{90}{\pi} \cos ^{-1}(0.4)
\end{aligned}
$$

$$
\text { Answer: } 180-2 t_{1}=180-\frac{180}{\pi} \cos ^{-1}(0.4)
$$

A different approach using two consecutive solutions t_{1} and t_{2} where find t_{2} from the equation

$$
\frac{\pi}{90} t=2 \pi-\cos ^{-1}(0.4) \quad \text { then } \quad t_{2}=\frac{90}{\pi}\left(2 \pi-\cos ^{-1}(0.4)\right)=180-\frac{90}{\pi} \cos ^{-1}(0.4)
$$

yields
Answer: $t_{2}-t_{1}=180-\frac{180}{\pi} \cos ^{-1}(0.4)$

