1. [8 points] The Amazing Wanda is performing a magic act.
a. Let $V(t)$ be the volume, in decibels (dB), of the audience's applause t seconds after the beginning of the act.
i. [2 points] At time $t=0$, the audience is already clapping at a volume of 52 dB . During Wanda's first trick, which lasts 45 seconds, the volume of the audience's applause increases at a constant rate of 0.4 dB per second. Write a formula for the function $V(t)$ during the first trick.

Answer: $\quad V(t)=$ \qquad for $0 \leq t \leq 45$
ii. [4 points] During Wanda's second trick, which begins at $t=45$ and lasts until the end of the act at time $t=95$, the volume of the audience's applause increases by 1.2% every second. Write a piecewise formula for the function $V(t)$ on the interval [0,95$]$. Make sure that $V(t)$ is a continuous function.

Answer: $V(t)= \begin{cases}\square & \text { for } 0 \leq t \leq 45 \\ & \text { for } 45<t \leq 95\end{cases}$
b. [2 points] A few minutes after her act, Wanda returns to the stage for an encore performance. Let $W(s)$ be the volume, in dB , of the audience's applause s seconds after the encore begins. A table of some values of $W(s)$ is given below.

s	0	2	3
$W(s)$	3.00	3.60	4.32

Could $W(s)$ be an exponential function? Circle your answer below. Show your work to justify your answer.

