4. [12 points] A portion of the graph of a function f is shown below. Note that $f(x)$ has a vertical asymptote at $x=2$.

Throughout this problem, you do not need to show work or explain your reasoning.
For parts \mathbf{a}. and \mathbf{b}. below, circle all of the listed values satisfying the given statement. If there are no such values listed, circle NONE.
a. [2 points] For which of the following values of a is $f(x)$ continuous at $x=a$?
$a=-3$
$a=-2$
$a=1$
$a=3$
NONE
b. [2 points] For which of the following values of b is $\lim _{x \rightarrow b^{+}} f(x)=f(b)$?

$$
b=-4 \quad b=-2 \quad b=0 \quad b=3 \quad \text { NONE }
$$

In the following parts, evaluate each of the given quantities. If the value does not represent a real number (including the case of limits that diverge to ∞ or $-\infty$), write "DNE" or "does not exist."
c. $[2$ points $] \lim _{x \rightarrow-2} f(x)$
e. $[2$ points $] \lim _{x \rightarrow 2} e^{-f(x)}$

Answer: \qquad
d. [2 points] $\lim _{x \rightarrow 5} f(x)$

Answer:
f. [2 points] $\lim _{h \rightarrow 0} \frac{f(-6+h)-f(-6)}{h}$

Answer: \qquad Answer: \qquad

