5. [12 points] A weather balloon is launched and heads straight up away from the ground. Let R(t) be the height, in kilometers, of the balloon above the ground t minutes after its launch. The function R(t) is invertible and differentiable.

t	1	3	9	18	35	45	60	63	86
R(t)	0.01	0.19	0.4	0.84	2.3	3	3.7	4.1	8.9

- **a**. [2 points] On which of the following intervals could R(t) be concave up on the entire interval? Circle **all** correct answers.
 - [1,9] [3,18] [9,35] None of these
- **b**. [2 points] Find the balloon's average velocity between times t = 3 and t = 18. Show work and *include units*.

Answer:

c. [3 points] Estimate the balloon's instantaneous velocity at t = 63. Show work and *include units*.

Answer:

d. [3 points] Estimate $(R^{-1})'(3)$. Show work and *include units*.

Answer: $(R^{-1})'(3) \approx$ _____

e. [2 points] Let M(s) be the height, in <u>meters</u>, of the balloon above the ground s <u>seconds</u> after its launch. Find a formula for M(s) in terms of R and s. (There are 1000 meters in one kilometer.)