5. [12 points] A weather balloon is launched and heads straight up away from the ground. Let $R(t)$ be the height, in kilometers, of the balloon above the ground t minutes after its launch. The function $R(t)$ is invertible and differentiable.

t	1	3	9	18	35	45	60	63	86
$R(t)$	0.01	0.19	0.4	0.84	2.3	3	3.7	4.1	8.9

a. [2 points] On which of the following intervals could $R(t)$ be concave up on the entire interval? Circle all correct answers.

$$
\left[\begin{array}{llll}
{[1,9]} & {[3,18]} & {[9,35]} & \text { NONE OF THESE }
\end{array}\right.
$$

b. [2 points] Find the balloon's average velocity between times $t=3$ and $t=18$. Show work and include units.

Answer:

c. [3 points] Estimate the balloon's instantaneous velocity at $t=63$. Show work and include units.

Answer:

d. [3 points] Estimate $\left(R^{-1}\right)^{\prime}(3)$. Show work and include units.

Answer: $\left(R^{-1}\right)^{\prime}(3) \approx$ \qquad
e. [2 points] Let $M(s)$ be the height, in meters, of the balloon above the ground s seconds after its launch. Find a formula for $M(s)$ in terms of R and s. (There are 1000 meters in one kilometer.)

Answer: $\quad M(s)=$ \qquad

