1. [8 points] The Amazing Wanda is performing a magic act.
a. Let $V(t)$ be the volume, in decibels (dB), of the audience's applause t seconds after the beginning of the act.
i. [2 points] At time $t=0$, the audience is already clapping at a volume of 52 dB . During Wanda's first trick, which lasts 45 seconds, the volume of the audience's applause increases at a constant rate of 0.4 dB per second. Write a formula for the function $V(t)$ during the first trick.

$$
\text { Answer: } \quad V(t)=\quad 0.4 t+52 \quad \text { for } 0 \leq t \leq 45
$$

ii. [4 points] During Wanda's second trick, which begins at $t=45$ and lasts until the end of the act at time $t=95$, the volume of the audience's applause increases by 1.2% every second. Write a piecewise formula for the function $V(t)$ on the interval [0,95]. Make sure that $V(t)$ is a continuous function.

Solution: The first piece of the formula for $V(t)$ was the answer to part i.
The function $V(t)$ is exponential for $45 \leq t \leq 95$ with growth factor 1.012. Note that at time $t=45$, Wanda's audience is clapping at a volume of $0.4(45)+52=70 \mathrm{~dB}$.

Approach 1: Since the constant percent growth begins at time $t=45$, we need to shift the exponential function with initial value 70 forward (to the right) by 45 seconds. This gives

$$
70(1.012)^{t-45}=70(1.012)^{-45}(1.012)^{t}=\frac{70}{1.012^{45}}(1.012)^{t}
$$

Note that this answer (which is exact) can be approximated by either of the following

$$
70(1.012)^{t-45} \approx 40.924(1.012)^{t} \text { or } 70(1.012)^{t-45} \approx 40.924 e^{0.0119 t}
$$

Approach 2: We can also find a formula for the exponential piece of $V(t)$ by using the facts that $V(45)=70$ and $V(t)$ is continuous. Solving for a in the resulting equation $70=a(1.012)^{45}$. gives the value $a=\frac{70}{1.012^{45}}$ resulting in the same formula as the previous approach.

b. [2 points] A few minutes after her act, Wanda returns to the stage for an encore performance. Let $W(s)$ be the volume, in dB , of the audience's applause s seconds after the encore begins. A table of some values of $W(s)$ is given below.

s	0	2	3
$W(s)$	3.00	3.60	4.32

Could $W(s)$ be an exponential function? Circle your answer below. Show your work to justify your answer.
Solution: No, $W(s)$ could not be exponential. Over the interval [2,3], the function grows by a factor of $4.32 / 3.60=1.2$. If $W(s)$ were exponential, it would therefore have to grow by a factor of $(1.2)^{2}$ over the interval $[0,2]$. But $3.6 / 3=1.2 \neq(1.2)^{2}$.

