3. [10 points] Horatio the Daring is performing a dangerous stunt. Helicopter A and Helicopter B are circling around Horatio to film the event. Let t be the amount of time, in minutes, since the start of Horatio's stunt.

A top-down view of the flight paths is shown at right. The locations of the helicopters at $t=0$ are labeled A and B, respectively, and Horatio's location is labeled H (at the origin).

All distances are measured in kilometers (km). The helicopters are flying counter-clockwise around Horatio in perfect circles at a constant height above the ground.

a. [4 points] Helicopter A moves at a constant speed of $0.7 \mathrm{~km} / \mathrm{min}$ around a circle of radius 2.1 km . Write a formula for the function $a(t)$ that gives the y-coordinate of Helicopter A at time t.

Solution: A circle of radius 2.1 km has circumference $4.2 \pi \mathrm{~km}$. If the helicopter flies at a constant speed of $0.7 \mathrm{~km} / \mathrm{min}$, then it takes the helicopter $(4.2 \pi) / 0.7=6 \pi$ minutes to fly all the way around the circle. The period of $a(t)$ is therefore 6π minutes.

Note that the y-coordinate of Helicopter A begins at its maximum value, so we can model $a(t)$ using a cosine function without a horizontal shift.

$$
\text { Answer: } a(t)=\underline{2.1 \cos \left(\frac{t}{3}\right) \text { or } 2.1 \sin \left(\frac{t}{3}+\frac{\pi}{2}\right)=2.1 \sin \left(\frac{1}{3}\left(t+\frac{3 \pi}{2}\right)\right)}
$$

b. [6 points] The x-coordinate of Helicopter B at time t is given by the formula

$$
b(t)=-3.8 \cos \left(\frac{\pi}{32} t\right) .
$$

Find all values of t during the first hour of the stunt at which the location of Helicopter B has x-coordinate less than or equal to -3 . Give your answer as one or more intervals, with endpoints in exact form.

Solution: First we find the times in the first hour $(0 \leq t \leq 60)$ when $b(t)=-3$. We know

$$
\begin{aligned}
-3.8 \cos \left(\frac{\pi}{32} t\right) & =-3 \\
\cos \left(\frac{\pi}{32} t\right) & =\frac{3}{3.8},
\end{aligned}
$$

so one solution is given by $\quad \frac{\pi}{32} t=\arccos \left(\frac{3}{3.8}\right)$

$$
\text { which gives } \quad t=\frac{32}{\pi} \arccos \left(\frac{3}{3.8}\right) \approx 6.73 \mathrm{~min} \text {. }
$$

The period of $b(t)$ is $2 \pi /(\pi / 32)=64 \mathrm{~min}$, and because $b(t)$ begins at its minimum value, we can use symmetry to see that the second (and final) time at which $b(t)=-3$ during the first hour is $t=64-\frac{32}{\pi} \arccos \left(\frac{3}{3.8}\right) \approx 57.27$ minutes.
The x-coordinate of Helicopter B is greater than -3 between these two times.

Answer: $\quad\left[0, \frac{32}{\pi} \arccos \left(\frac{3}{3.8}\right)\right] \quad$ and $\quad\left[64-\frac{32}{\pi} \arccos \left(\frac{3}{3.8}\right), 60\right]$

