5. [12 points] A weather balloon is launched and heads straight up away from the ground. Let $R(t)$ be the height, in kilometers, of the balloon above the ground t minutes after its launch. The function $R(t)$ is invertible and differentiable.

t	1	3	9	18	35	45	60	63	86
$R(t)$	0.01	0.19	0.4	0.84	2.3	3	3.7	4.1	8.9

a. [2 points] On which of the following intervals could $R(t)$ be concave up on the entire interval? Circle all correct answers.
[1, 9]

$$
\begin{equation*}
[3,18] \tag{9,35}
\end{equation*}
$$

NONE OF THESE
b. [2 points] Find the balloon's average velocity between times $t=3$ and $t=18$. Show work and include units.
Solution: The balloon's average velocity over this time period is given by

$$
\begin{aligned}
& \frac{R(18)-R(3)}{18-3}=\frac{0.84-0.19}{18-3}=\frac{0.65}{15}=\frac{13}{300} \\
& \text { Answer: } \quad \frac{0.84-0.19}{18-3}=\frac{13}{300} \approx 0.0433 \mathrm{~km} / \mathrm{min}
\end{aligned}
$$

c. [3 points] Estimate the balloon's instantaneous velocity at $t=63$. Show work and include units.

Solution: The balloon's instantaneous velocity at $t=63$ is $R^{\prime}(63)$.
The closest given time to $t=63$ is $t=60$, so we use the average rate of change of R over [60,63] to estimate $R^{\prime}(63)$. (Note that $t=86$ is very far from $t=63$ when compared to $t=60$.)

$$
R^{\prime}(63) \approx \frac{R(63)-R(60)}{63-60}=\frac{4.1-3.7}{63-60}=\frac{0.4}{3}=\frac{4}{30} \approx 0.133 \mathrm{~km} / \mathrm{min}
$$

Answer: approximately $0.133 \mathrm{~km} / \mathrm{min}$
d. [3 points] Estimate $\left(R^{-1}\right)^{\prime}(3)$. Show work and include units.

Solution: The closest given distances to 3 km are 2.3 km and 3.7 km . We will estimate $\left(R^{-1}\right)^{\prime}(3)$ by taking the average rate of change of R^{-1} over the interval $[2.3,3.7]$.

$$
\left(R^{-1}\right)^{\prime}(3) \approx \frac{R^{-1}(3.7)-R^{-1}(2.3)}{3.7-2.3}=\frac{60-35}{3.7-2.3}=\frac{25}{1.4}=\frac{125}{7} \approx 17.86 \mathrm{~min} / \mathrm{km}
$$

It would also be okay to use the interval [2.3,3] or [3, 3.7], which would give about 14.3 and 21.4 $\mathrm{min} / \mathrm{km}$, respectively. The average of these two estimates would give the estimate we found above.

Answer: $\left(R^{-1}\right)^{\prime}(3) \approx \quad 17.86 \mathrm{~min} / \mathrm{km}$
e. [2 points] Let $M(s)$ be the height, in meters, of the balloon above the ground s seconds after its launch. Find a formula for $M(s)$ in terms of R and s. (There are 1000 meters in one kilometer.)

Answer: $\quad M(s)=1 \quad 1000 R\left(\frac{1}{60} s\right)$

