6. [4 points] Shown below at left is a portion of the graph of a function $m(x)$. Shown below at right is a portion of the graph of a function $p(x)$, which can be obtained from $m(x)$ through one or more graph transformations. Find a formula for $p(x)$ in terms of $m(x)$.

Answer: $\quad p(x)=\underline{-m\left(\frac{1}{2} x-1\right)=-m\left(\frac{1}{2}(x-2)\right)}$
7. [9 points] For a constant c, let

$$
K(x)=\frac{2^{c x}}{e^{x-c}} .
$$

a. [5 points] Use the limit definition of the derivative to write an explicit expression for $K^{\prime}(3)$. Your answer may include the constant c but should not involve the letter K. Do not attempt to evaluate or simplify the limit. Write your final answer in the answer box provided below.

Answer: $K^{\prime}(3)=\square \lim _{h \rightarrow 0} \frac{\frac{2^{2^{c(3+h)}}}{e^{(3+h)-c}}-\frac{2^{c(3)}}{e^{3-c}}}{h}$
b. [4 points] Find the value of c so that $K(1)=5$. Give your answer in exact form and show all your work.
Solution: We want c such that

$$
\begin{aligned}
\frac{2^{c(1)}}{e^{1-c}} & =5, \text { or } \\
2^{c} & =5 e^{1-c} .
\end{aligned}
$$

Solving, we find that $\ln \left(2^{c}\right)=\ln \left(5 e^{1-c}\right)$

$$
\begin{aligned}
\ln \left(2^{c}\right) & =\ln (5)+\ln \left(e^{1-c}\right) \\
c \ln (2) & =\ln (5)+1-c \\
c \ln (2)+c & =\ln (5)+1 \\
c(\ln (2)+1) & =\ln (5)+1 \\
c & =\frac{\ln (5)+1}{\ln (2)+1} .
\end{aligned}
$$

$$
\frac{\ln (5)+1}{\ln (2)+1}
$$

