6. [4 points] Shown below at left is a portion of the graph of a function \(m(x) \). Shown below at right is a portion of the graph of a function \(p(x) \), which can be obtained from \(m(x) \) through one or more graph transformations. Find a formula for \(p(x) \) in terms of \(m(x) \).

\[y = m(x) \]

\[y = p(x) \]

\text{Answer: } p(x) = -m \left(\frac{1}{2} x - 1 \right) = -m \left(\frac{1}{2} (x - 2) \right)

7. [9 points] For a constant \(c \), let

\[K(x) = \frac{2^c x}{e^{x-c}}. \]

a. [5 points] Use the limit definition of the derivative to write an explicit expression for \(K'(3) \). Your answer may include the constant \(c \) but should not involve the letter \(K \). Do not attempt to evaluate or simplify the limit. Write your final answer in the answer box provided below.

\text{Answer: } K'(3) = \lim_{h \to 0} \frac{2^{c(3+h)} - 2^{c(3)}}{e^{(3+h)-c} - e^{3-c}}

b. [4 points] Find the value of \(c \) so that \(K(1) = 5 \). Give your answer in \textbf{exact form} and show all your work.

\text{Solution: } We want \(c \) such that

\[\frac{2^c(1)}{e^{1-c}} = 5, \text{ or } 2^c = 5e^{1-c}. \]

Solving, we find that \(\ln(2^c) = \ln(5e^{1-c}) \)

\[\ln(2^c) = \ln(5) + \ln(e^{1-c}) \]

\[c \ln(2) = \ln(5) + 1 - c \]

\[c \ln(2) + c = \ln(5) + 1 \]

\[c(\ln(2) + 1) = \ln(5) + 1 \]

\[c = \frac{\ln(5) + 1}{\ln(2) + 1}. \]

\text{Answer: } c = \frac{\ln(5) + 1}{\ln(2) + 1}