8. [12 points] The size of the harvest at a kale farm is a function of the total amount of compost the farm uses in the fields.

- Let $K(c)$ be the size (as measured by weight) of the farm's kale harvest, in tons, when the farm uses c cubic meters $\left(\mathrm{m}^{3}\right)$ of compost.
- Let $P(h)$ be the farm's profit, in thousands of dollars, when their kale harvest is h tons.

The functions $K(c)$ and $P(h)$ are differentiable, and the function $P(h)$ is invertible.
a. [2 points] Using a complete sentence, give a practical interpretation of the equation

$$
P^{-1}(86)=53 .
$$

Solution: In order for the kale farm to make 86 thousand dollars in profit, they need to harvest 53 tons of kale.
b. [3 points] Write a single equation involving K, P, and/or P^{-1} that represents the following statement.

If the farm uses $1125 \mathrm{~m}^{3}$ of compost, their profit will be twice as large as if they had used $700 \mathrm{~m}^{3}$ of compost.

Answer: $\quad P(K(1125))=2 P(K(700))$
c. [3 points] Complete the following sentence to give a practical interpretation of the equation

$$
K^{\prime}(950)=0.2 .
$$

If the farm uses $955 \mathrm{~m}^{3}$ of compost instead of $950 \mathrm{~m}^{3}, \ldots$
Solution: ... they would harvest roughly 1 additional ton of kale.
d. [4 points] Write a single equation involving the derivative function(s) K^{\prime}, P^{\prime}, and/or $\left(P^{-1}\right)^{\prime}$ that represents the following statement.

In order for the farm's profit to be $\$ 101,500$ rather than $\$ 100,000$, their kale harvest must be about 0.9 tons larger.

Answer:

$$
\left(P^{-1}\right)^{\prime}(100)=0.6
$$

