9. [10 points] Parts a. - c. below are not related. You do not need to show work on this page, but partial credit may be earned for work shown.
a. [4 points] A portion of the graph of a polynomial function $q(x)$ is shown below. Find a possible formula for $q(x)$ of the smallest possible degree. Assume that all of the key features of the graph are shown.

Solution: We see that the degree of $q(x)$ must be even. The zeros of $q(x)$ are -1 , 2 , and 4. Note that 2 is a double zero. We use the point $(0,4)$ to find the leading coefficient.

$$
\begin{aligned}
q(x) & =C(x+1)(x-2)^{2}(x-4) \\
4 & =C(0+1)(0-2)^{2}(0-4) \\
-\frac{1}{4} & =C
\end{aligned}
$$

$$
\text { Answer: } \quad q(x)=\xrightarrow{-\frac{1}{4}(x+1)(x-2)^{2}(x-4)}
$$

b. [3 points] Find the formula for a rational function $r(x)$ that has a hole with an x-value of 5 , a vertical asymptote at $x=1$, and a horizontal asymptote at $y=-2$.

Solution: Note that the factor of x in the numerator could be replaced by any degree 1 factor $(x+B)$ with B a constant.

$$
\text { Answer: } \quad r(x)=\frac{\frac{-2(x-5) x}{(x-5)(x-1)}}{(x)}
$$

c. [3 points] Consider the function

$$
z(x)=\frac{4^{-x}-2 x^{2}}{15 x+3 x^{2}} .
$$

Find $\lim _{x \rightarrow \infty} z(x)$ and $\lim _{x \rightarrow-\infty} z(x)$. If the value does not represent a real number (including the case of limits that diverge to ∞ or $-\infty$), write "DNE" or "does not exist."
Solution: Note that $4^{-x}=\left(\frac{1}{4}\right)^{x}$, so $\lim _{x \rightarrow \infty} 4^{-x}=0$ and $\lim _{x \rightarrow-\infty} 4^{-x}$ does not exist (as 4^{-x} diverges to ∞ as $x \rightarrow-\infty$).

Answer: $\lim _{x \rightarrow \infty} z(x)=-\frac{2}{3} \quad$ and $\lim _{x \rightarrow-\infty} z(x)=-\quad$ DNE

