10. [9 points] A portion of the graph of a function $g(x)$ is shown below.

![Graph of $g(x)$](image)

The function g has the following characteristics.
- A vertical asymptote at $x = 2$ (and no others).
- A horizontal asymptote at $y = -3$ (and no others).
- $g(x)$ is continuous and increasing on the interval $(-\infty, 0)$.
- $g(x)$ is continuous and decreasing on the interval $(2, \infty)$.
- The tangent line to the graph of $g(x)$ at $x = 0$ is horizontal.

a. [5 points] Consider $g'(x)$, the derivative of $g(x)$.
Determine whether each statement below is TRUE or FALSE. Write out the entire word TRUE or FALSE as your answer. No explanation is required.
 i. $g'(-4) = 0$
 ii. $g'(0) = 0$
 iii. $g'(3) < g'(6)$
 iv. $g'(-4) = g'(4)$
 v. $g'(x)$ is decreasing on the interval $(-2, 1)$

b. [4 points] Consider the function $h(x) = 3g(x + 2)$.
Determine whether each statement below is TRUE or FALSE. Write out the entire word TRUE or FALSE as your answer. No explanation is required.
 i. $h(x)$ is defined for all real numbers.
 ii. The line $y = -1$ is a horizontal asymptote of the graph of $y = h(x)$.
 iii. The line $x = 4$ is a vertical asymptote of the graph of $y = h(x)$.
 iv. $h(x)$ is not continuous at $x = 0$.