7. [12 points] The graph of the function $f(x)$ is shown below.

For a.-c., give your answers as a list of one or more of the given numbers, or write none.
a. [1 point] At which of the values $a=1,2,3,4,5$ is $f(a)$ undefined?
b. [1 point] For which of the values $a=1,2,3,4,5$ is $f(x)$ continuous at $x=a$?
c. [2 points] For which of the values $a=1,2,3,4,5$ is $f(a)=\lim _{x \rightarrow a^{-}} f(x)$?

For d.-g., use the graph of the function $f(x)$ to evaluate each of the expressions below. If a limit diverges to ∞ or $-\infty$ or if the limit does not exist for any other reason, write DNE.
d. [2 points] $\lim _{x \rightarrow 5} f(x)$
e. [2 points] $\lim _{x \rightarrow 3} f(x)$
f. [2 points] $\lim _{x \rightarrow 0} f(4+|x|)$
g. [2 points] $\lim _{h \rightarrow 0} \frac{f(4.25+h)-f(4.25)}{h}$
8. [11 points] Consider the rational function $g(x)=\frac{(x-12)(x-7)(x-2)}{(2 x-4)(x-3)(x-5)}$.
a. [2 points] What are the vertical asymptotes of the function $g(x)$?
b. [2 points] What are the vertical asymptotes of the function $\frac{1}{g(x)}$?

The piecewise function $h(x)$ is defined as follows, where $g(x)$ is as above, where $f(x)$ is from Problem 7 above, and where B is a nonzero constant.

$$
h(x)= \begin{cases}\frac{e^{2 x}}{x^{2}} & x \leq 3 \\ B \cdot f(x) & 3<x \leq 6 \\ g(x) & 6<x\end{cases}
$$

c. [3 points] Find an exact value of B for which the function $h(x)$ is continuous at $x=3$. Show your work.

Evaluate each of the expressions below. If a limit diverges to ∞ or $-\infty$ or if the limit does not exist for any other reason, write DNE.
d. [2 points] $\lim _{x \rightarrow \infty} h(x)$
e. [2 points] $\lim _{x \rightarrow-\infty} h(x)$

