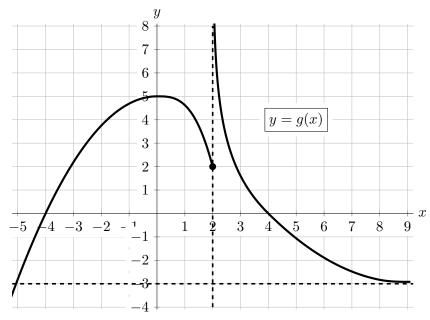
10. [9 points] A portion of the graph of a function g(x) is shown below.



The function g has the following characteristics.

- A vertical asymptote at x = 2 (and no others).
- A horizontal asymptote at y = -3 (and no others).
- g(x) is continuous and increasing on the interval $(-\infty, 0)$.
- g(x) is continuous and decreasing on the interval $(2, \infty)$.
- The tangent line to the graph of g(x) at x = 0 is horizontal.

a. [5 points] Consider g'(x), the <u>derivative</u> of g(x).

Determine whether each statement below is TRUE or FALSE. Write out the <u>entire word</u> TRUE or FALSE as your answer. No explanation is required.

i. $g'(-4) = 0$	FALSE
ii. $g'(0) = 0$	TRUE
iii. $g'(3) < g'(6)$	TRUE
iv. $g'(-4) = g'(4)$	FALSE
v. $g'(x)$ is decreasing on the interval $(-2, 1)$	TRUE

Solution: Remember, g'(a) is the slope of the tangent line to the graph of g(x) at x = a.

b. [4 points] Consider the function h(x) = 3g(x+2). Determine whether each statement below is TRUE or FALSE. Write out the <u>entire word</u> TRUE or FALSE as your answer. No explanation is required.

i. $h(x)$ is defined for all real numbers.	TRUE
ii. The line $y = -1$ is a horizontal asymptote of the graph of $y = h(x)$.	FALSE
iii. The line $x = 4$ is a vertical asymptote of the graph of $y = h(x)$.	FALSE
iv. $h(x)$ is not continuous at $x = 0$.	TRUE

Solution: Note that the graph of h(x) is obtained from the graph of g(x) by first shifting the graph to the left by 2 units and then scaling (stretching) it vertically by a factor of 3.