4. [11 points]
a. [6 points] Consider the given table of values for the function $R(t)$.

t	1	4	10
$R(t)$	2	6	18

i. Could $R(t)$ be a linear function? Write YES or NO, show your work, and briefly explain your answer.
Solution: If $R(t)$ were linear then its average rate of change over any interval would be the same. However, the average rate of change on $[1,4]$ is $\frac{6-2}{4-1}=\frac{4}{3}$ whereas the average rate of change on $[4,10]$ is $\frac{18-6}{10-4}=\frac{12}{6}=2$. Since these rates of change are not equal, $R(t)$ cannot be linear.
ii. Could $R(t)$ be an exponential function? Write YES or NO, show your work, and briefly explain your answer.

Solution: If $R(t)$ were exponential then its growth factor over any interval would be constant. On the one hand, the growth factor from 1 to 4 would be the solution to the equation $a^{4-1}=$ $\frac{6}{2}=3$, that is, $a=3^{1 / 3}$. On the other hand, the growth factor from 4 to 10 would be the solution to the equation $a^{10-4}=\frac{18}{6}=3$, that is, $a=3^{1 / 6}$. Since these growth factors are not the same, $R(t)$ cannot be exponential.
b. [5 points] Consider a different function $S(t)$, which is equal to 5 at $t=0$, and decreases by 40% every 4 units of time. For which value of t will $S(t)$ be equal to 1 ? Show every step of your work, and give your final answer in exact form.

Solution: The growth factor a is the solution to the equation $a^{4}=1-0.4$, that is, $a=(0.6)^{1 / 4}$. Since the initial value is $S(0)=5$, a formula for $S(t)$ is $S(t)=5\left((0.6)^{1 / 4}\right)^{t}=5(0.6)^{t / 4}$. Now we solve for t in the equation $S(t)=1$.

$$
\begin{aligned}
5(0.6)^{t / 4} & =1 \\
0.6^{t / 4} & =0.2 \\
\ln \left(0.6^{t / 4}\right) & =\ln (0.2) \\
\frac{t}{4} \cdot \ln (0.6) & =\ln (0.2) \\
t & =\frac{4 \ln (0.2)}{\ln (0.6)}
\end{aligned}
$$

