7. [12 points] The graph of the function $f(x)$ is shown below.

For a.-c., give your answers as a list of one or more of the given numbers, or write nONE.
a. [1 point] At which of the values $a=1,2,3,4,5$ is $f(a)$ undefined?

```
Solution: NONE
```

b. [1 point] For which of the values $a=1,2,3,4,5$ is $f(x)$ continuous at $x=a$?

Solution: $a=2$
c. [2 points] For which of the values $a=1,2,3,4,5$ is $f(a)=\lim _{x \rightarrow a^{-}} f(x)$?

$$
\text { Solution: } \quad a=2,4
$$

For d.-g., use the graph of the function $f(x)$ to evaluate each of the expressions below. If a limit diverges to ∞ or $-\infty$ or if the limit does not exist for any other reason, write DNE.
d. [2 points] $\lim _{x \rightarrow 5} f(x)$

Solution: Since $\lim _{x \rightarrow 5^{-}} f(x)=-2$ and $\lim _{x \rightarrow 5^{+}} f(x)=-2$, the two-sided limit is -2 .
e. [2 points] $\lim _{x \rightarrow 3} f(x)$

Solution: Since $\lim _{x \rightarrow 3^{-}} f(x)=2$ while $\lim _{x \rightarrow 3^{+}} f(x)=-1$, the two-sided limit does not exist.
f. [2 points] $\lim _{x \rightarrow 0} f(4+|x|)$

Solution: As x approaches 0 from both sides, $|x|$ approaces 0 through positive values. So $\lim _{x \rightarrow 0} f(4+|x|)=\lim _{t \rightarrow 4^{+}} f(t)=2$.
g. [2 points] $\lim _{h \rightarrow 0} \frac{f(4.25+h)-f(4.25)}{h}$

Solution: This expression represents the slope of the tangent line to the graph of $g(x)$ at $x=4.25$. On the interval $(4,5)$ the graph is linear with slope -4 ; so the limit is -4 .

