8. [11 points] Consider the rational function $g(x)=\frac{(x-12)(x-7)(x-2)}{(2 x-4)(x-3)(x-5)}$.
a. [2 points] What are the vertical asymptotes of the function $g(x)$?

Solution: The vertical asymptotes of $g(x)$ are $x=3$ and $x=5$.
(Note that the numerator of $g(x)$ is equal to 0 when $x=12, x=7$, and $x=2$, while the denominator is equal to 0 when $x=2, x=3$, and $x=5$. Now $g(x)=\frac{(x-12)(x-7)}{2(x-3)(x-5)}$ when $x \neq 2$ so $\lim _{x \rightarrow 2} g(x)$ exists. Therefore $g(x)$ has a "hole" at $x=2$ rather than a vertical asymptote.)
b. [2 points] What are the vertical asymptotes of the function $\frac{1}{g(x)}$?

Solution: The vertical asymptotes of $\frac{1}{g(x)}$ are $x=7$ and $x=12$.
(The function $\frac{1}{g(x)}$ is obtained from the function $g(x)$ by swapping its numerator and denominator. Therefore, the vertical asymptotes of $\frac{1}{g(x)}$ are the zeroes of $g(x)$, namely, $x=7$ and $x=12$.)

The piecewise function $h(x)$ is defined as follows, where $g(x)$ is as above, where $f(x)$ is from Problem 7 above, and where B is a nonzero constant.

$$
h(x)= \begin{cases}\frac{e^{2 x}}{x^{2}} & x \leq 3 \\ B \cdot f(x) & 3<x \leq 6 \\ g(x) & 6<x\end{cases}
$$

c. [3 points] Find an exact value of B for which the function $h(x)$ is continuous at $x=3$. Show your work.
Solution: Note that $h(3)=\lim _{x \rightarrow 3^{-}} h(x)=\frac{e^{6}}{9}$. while $\lim _{x \rightarrow 3^{+}} B \cdot f(x)=B \cdot f(3)=-B$. In order for $f(x)$ to be continuous at $x=3$, these limits must be equal to each other, so $B=-\frac{e^{6}}{9}$.
Evaluate each of the expressions below. If a limit diverges to ∞ or $-\infty$ or if the limit does not exist for any other reason, write DNE.
d. [2 points] $\lim _{x \rightarrow \infty} h(x)$

Solution: Since $h(x)=g(x)$ when $x>6$, this limit is the same as $\lim _{x \rightarrow \infty} g(x)$. The limit of this rational function is determined by the leading terms in the numerator and denominator. The leading term of the numerator is x^{3}, and the leading term of the denominator is $2 x^{3}$. So

$$
\lim _{x \rightarrow \infty} h(x)=\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} \frac{x^{3}}{2 x^{3}}=\lim _{x \rightarrow \infty} \frac{1}{2}=\frac{1}{2} .
$$

e. [2 points] $\lim _{x \rightarrow-\infty} h(x)$

Solution:

$$
\lim _{x \rightarrow-\infty} h(x)=\lim _{x \rightarrow-\infty} \frac{e^{2 x}}{x^{2}}=0
$$

(The first equality holds since $h(x)=\frac{e^{2 x}}{x^{2}}$ when $x \leq 3$. As x grows without bound in the negative direction, $e^{2 x}$ approaches 0 while x^{2} grows without bound. So $\lim _{x \rightarrow-\infty} \frac{e^{2 x}}{x^{2}}=0$.)

