9. [8 points] The server for a website stores user data. Let $D(t)$ be the amount of user data stored on the server, in gigabytes (GB), at time t hours after noon. Below is a portion of the graph of $D^{\prime}(t)$, the derivative of $D(t)$. The function $D^{\prime}(t)$ is

- constant for $3 \leq t \leq 5$, for $7 \leq t \leq 8$, and for $t \geq 10$, and is
- linear for $5 \leq t \leq 7$ and for $8 \leq t \leq 10$.

a. [2 points] On which of the following intervals of t is the amount of user data stored on the server increasing for the entire interval? Give your answer as a list of one or more intervals, or write NONE.

$$
\begin{equation*}
(1,2) \tag{0.5,1.5}
\end{equation*}
$$

Solution: (The amount of user data is increasing when its derivative, the function $D^{\prime}(t)$ graphed above, is positive.)
b. [2 points] When the amount of user data on the server is changing faster than $2 \mathrm{~GB} / \mathrm{hr}$, either increasing or decreasing, the server is said to be in an "excited state." How many hours, between noon and midnight, does the server spend in an excited state?

Solution: The server spends 5 hours in an excited state.
(This question is asking for the times t when $D^{\prime}(t)>+2$ or $D^{\prime}(t)<-2$. The graph lies above the line $y=+2$ for $6<t<8.5$ and lies below the line $y=-2$ for $6<t<8.5$.)
c. [2 points] The server hibernates when the amount of user data is not changing. How many hours, between noon and midnight, does the server spend in hibernation?

Solution: The amount of user data $D(t)$ is not changing exactly when the derivative $D^{\prime}(t)$ equals zero. The total time in hibernation is therefore $5-3=2$ hours.
d. [2 points] At midnight, 450 GB of data is stored on the server. If the rate of change of user data stays the same from midnight to 5 am the following morning, how much user data will be stored on the server at 5 am ?

Solution: The graph above shows that $D^{\prime}(12)=-4$, so at midnight, the amount of data is changing at a rate of $-4 \mathrm{~GB} / \mathrm{hr}$. From midnight to 5 am the total change in the amount of data is therefore $5 \mathrm{hr} \cdot(-4 \mathrm{~GB} / \mathrm{hr})=-20 \mathrm{~GB}$. Since the server has 450 GB of data at midnight, there must be $450-20=430 \mathrm{~GB}$ of data at 5 am .

