4. [9 points]

Consider the piecewise function

$$
q(x)= \begin{cases}7 e^{x-C}+\frac{x}{3 x-2} & x<0 \\ \frac{6+5 x}{2+3 x+4^{x}} & x \geq 0\end{cases}
$$

where C is a constant.
a. [5 points] Find an exact value of C for which the function $q(x)$ is continuous at $x=0$, or write nONE if there is no such value. Show your work and make sure your final answer is clear.

Solution: Set both pieces of the function equal for $x=0$ and solve for C :

$$
\begin{aligned}
7 e^{0-C}+\frac{0}{3(0)-2} & =\frac{6+5(0)}{2+3(0)+4^{0}} \\
7 e^{-C} & =2
\end{aligned}
$$

(Below is one possible approach to solving for C.)

$$
\begin{aligned}
\ln \left(7 e^{-C}\right) & =\ln (2) \\
\ln (7)+\ln \left(e^{-C}\right) & =\ln (2) \\
\ln (7)-C & =\ln (2) \\
C & =\ln (7)-\ln (2)
\end{aligned}
$$

$$
\text { Answer: } \quad C=\frac{\ln (7)-\ln (2)}{}
$$

Evaluate each of the expressions below. If a limit does not exist, including if it diverges to $\pm \infty$, write DNE. You do not need to show work.
b. [2 points] $\lim _{x \rightarrow \infty} q(x)$

Solution:

$$
\lim _{x \rightarrow \infty} \frac{6+5 x}{2+3 x+4^{x}}=0
$$

Answer: \qquad
c. [2 points] $\lim _{x \rightarrow-\infty} q(x)$

Solution:

$$
\lim _{x \rightarrow-\infty}\left(7 e^{x-C}+\frac{x}{3 x-2}\right)=\frac{1}{3}
$$

Answer:

