5. [11 points] Below is a portion of the graph of the function $H(x)$, which is defined for all $x<1$ and all $x>1$. Note that $H(x)$ is linear for $2 \leq x<3$, and that $H(x)$ has a horizontal asymptote at $y=2$ and a vertical asymptote at $x=1$.

Use this graph to find the numerical value of each of the following limits. If a limit does not exist, including if it diverges to $\pm \infty$, write DNe. You do not need to show work.
a. [1 point] $\lim _{x \rightarrow-2} H(x)$

Answer:
DNE
b. [1 point $] \lim _{x \rightarrow 3} H(x)$

Answer:
c. [1 point] $\lim _{x \rightarrow-\infty} H(x)$
d. [2 points] $\lim _{x \rightarrow 4^{+}} H(3-x)$
e. [2 points] $\lim _{h \rightarrow 0} \frac{H(2.5+h)-H(2.5)}{h}$

Answer: \qquad
Answer: $\quad 2$

Answer: \qquad

Define the function $J(x)=3 H(-2 x)-1$. You do not need to show work in the next two parts.
f. [2 points] Where does the function $J(x)$ have a vertical asymptote? At $x=\underline{-1 / 2}$.
g. [2 points] Where does the function $J(x)$ have a horizontal asymptote? At $y=\underline{5}$.

