5. [11 points] Below is a portion of the graph of the function H(x), which is defined for all x < 1 and all x > 1. Note that H(x) is linear for $2 \le x < 3$, and that H(x) has a horizontal asymptote at y = 2 and a vertical asymptote at x = 1.

Use this graph to find the numerical value of each of the following limits. If a limit does not exist, including if it diverges to $\pm \infty$, write DNE. You do not need to show work.

a. [1 point] $\lim_{x \to -2} H(x)$	Answer:	DNE
b. [1 point] $\lim_{x \to 3} H(x)$	Answer:	3
c. [1 point] $\lim_{x \to -\infty} H(x)$	Answer:	2
d . [2 points] $\lim_{x \to 4^+} H(3-x)$	Answer:	1
e. [2 points] $\lim_{h \to 0} \frac{H(2.5+h) - H(2.5)}{h}$	Answer:	2

Define the function J(x) = 3H(-2x) - 1. You do not need to show work in the next two parts.

- **f**. [2 points] Where does the function J(x) have a vertical asymptote? At $x = -\frac{1}{2}$.
- **g**. [2 points] Where does the function J(x) have a horizontal asymptote? At $y = \underline{5}$.