7. [3 points] Assume that $k(t)$ is a differentiable function defined for all t, and that the tangent line to the graph of $k(t)$ at $t=2$ passes through the points $(1,10)$ and $(4,19)$. Find the values of $k(2)$ and $k^{\prime}(2)$. You do not need to show work, but limited partial credit may be earned for work shown.

Answer: $k(2)=$ \qquad and $\quad k^{\prime}(2)=$ \qquad
8. [5 points] For each part below, carefully draw the graph of a single function on the given axes that satisfies the given conditions, or, if no such function exists, write DNE.
a. [2 points]

A function $p(x)$ such that

- $p(x)$ is defined for all $-3<x<3$,
- $\frac{p(2)-p(-2)}{2-(-2)}=0$, and
- $p(x)$ is invertible.

b. [3 points]

A function $q(x)$ such that

- $q(x)$ is defined for all $-3<x<3$,
- $q(x)$ is increasing on $(-3,3)$,
- $q(x)$ is concave up on $(-3,0)$, and
- $q(x)$ is an odd function.

