9. [8 points] The Lambda app, developed by your friends, displays information about a train that departed the Detroit station at noon and is traveling on the track between Detroit and Ann Arbor.

The app shows you several values of $\lambda(t)$, the differentiable function that gives the distance along the track, in kilometers, from the Detroit station to the train t minutes after noon:

t	37	39	41	43	45
$\lambda(t)$	16	16	24	30	36

The graph of $\lambda^{\prime}(t)$, the derivative of $\lambda(t)$, for $0 \leqslant t \leqslant 37$, is also shown:

For parts a. and b., you may estimate values from the graph as needed.
a. [1 point] Find all times t for $0<t<37$ when the train is traveling at its maximum velocity. Give your answer as value(s) and/or interval(s) of t.

Answer:

b. [1 point] Find all times t for $0<t<37$ when the train is traveling at its maximum speed. Give your answer as value(s) and/or interval(s) of t.

Answer:

\qquad
c. [2 points] Find the average velocity of the train between $12: 00 \mathrm{pm}$ and $12: 45 \mathrm{pm}$. Include units.

Answer:

d. [2 points] Estimate the instantaneous velocity of the train at $t=41$. Include units.

Answer:

e. [2 points] During which of the following time intervals is the train stopped for the entire time? Circle all correct choices.

