2. [6 points] You are an intern at A\&B, Alice \& Bob Inc. It's the year 2055, and you're headed to Mars to help the newest A\&B store, which will open there on January $1^{s t}, 2056$.
a. [3 points] The daily sales of space suits, in thousands, at the new store d Earth days after it opens can be modeled by the sinusoidal function

$$
S(d)=16 \sin \left(\frac{2 \pi}{687} \cdot d\right)+17
$$

i. The function $S(d)$ has a period of one Mars year. Use this information to find the length of a Mars year in units of Earth days.

Answer: One Mars year is \qquad Earth days.
ii. According to this model, what are the minimum and maximum daily sales, in thousands, of A\&B space suits on Mars?
minimum sales of \qquad thousand suits maximum sales of \qquad thousand suits
b. [3 points] The daily sales of space boots, in thousands, at the new store m Mars days after it opens can be modeled by a different sinusoidal function $B(m)$, which also has a period of one Mars year, which is 670 Mars days. The graph of $B(m)$ is given below. Note that a maximum occurs at $m=0$.

The first time that daily sales of space boots equals 13,000 is $m=225$ Mars days after the store opens, as shown on the graph. Find the next two values of m at which daily sales of space boots will equal 13,000 according to this model. You do not need to simplify your answers.
Solution: We know that the period is equal to 670 and $m=0$ is a maximum. Therefore, using the symmetry of the graph, the next time sales will be 13,000 is

$$
670-225=445
$$

To get the third time when sales are 13,000 we should just add a period to the first solution:

$$
225+670=895 .
$$

Answer: \qquad and 895

