3. [5 points] The function $y(t)$, given to the right, gives the mass, in milligrams, of a yeast colony t hours after an experiment begins, where A, B, and C are constants.

$$
y(t)= \begin{cases}\frac{A}{1+e^{-C t}} & 0 \leq t<4 \\ 12 B^{t} & t \geq 4\end{cases}
$$

Find the values of A, B, and C such that all of the following hold:

- $\lim _{t \rightarrow 0^{+}} y(t)=8$,
- the yeast colony's mass decays by 2% each hour after $t=4$, and
- $y(t)$ is continuous at $t=4$.

Show your work, and give your answers in exact form.
Solution: Because $\frac{A}{1+e^{-C t}}$ is a continuous function, the first point gives

$$
8=\lim _{t \rightarrow 0^{+}} \frac{A}{1+e^{-C t}}=\frac{A}{1+e^{-C \cdot 0}}=\frac{A}{1+1},
$$

so $A=16$. The second point gives $B=0.98$.
Finally, the third point means we must have $\lim _{t \rightarrow 4^{-}} y(t)=\lim _{t \rightarrow 4^{+}} y(t)=y(4)$. So we must have

$$
\frac{16}{1+e^{-C \cdot 4}}=12 \cdot(0.98)^{4} \quad \text { so } \quad \frac{16}{12 \cdot(0.98)^{4}}-1=e^{-C \cdot 4} .
$$

Taking \ln of both sides and then dividing by -4 , we get $C=-\frac{1}{4} \ln \left(\frac{16}{12 \cdot(0.98)^{4}}-1\right)$.

Answers: $\quad A=\begin{aligned} & 16 \\ & 0.98\end{aligned} C=\quad-\frac{1}{4} \ln \left(\frac{16}{12 \cdot(0.98)^{4}}-1\right)$
4. [7 points] Consider the rational function $r(x)=\frac{x(x-1)(x+4)^{2}}{\left(x^{2}-1\right)(x+4)}$.
a. [5 points]
i. Find the equations of any horizontal asymptotes of $r(x)$ or write NONE if there are none.

Answer: NONE
ii. Find all the zeros of $r(x)$, or write none if there are none.

Answer: 0
iii. Find all numbers c such that the limit $\lim _{x \rightarrow c} r(x)$ exists but $r(c)$ is not defined.

Answer: $\quad-4,1$
b. [2 points] Find a linear function $h(x)$ such that the function $r(x) \cdot h(x)$ has no vertical asymptotes.

Answer: $\quad h(x)=$ \qquad

