6. [11 points] Below is a portion of the graph of an even function $f(x)$, which has domain $(-\infty, \infty)$ even though the graph below only shows the function on the interval [0,5]. Note that $f(x)$ has a vertical asymptote at $x=1$.

a. [1 point] At which of the following values of x is $f(x)$ continuous? Circle all correct answers.

$$
x=1 \quad x=2 \quad x=3 \quad x=4 \quad \text { NONE OF THESE }
$$

b. [8 points] Find the exact numerical value of each expression below, if possible. For any values that do not exist, including if they are limits that diverge to $\pm \infty$, write DNE. If there is not enough information to find a given value or determine whether it exists, write NEI.
You do not need to show work. As a reminder, $f(x)$ is an even function.

$$
\begin{array}{ll}
f(f(3))=-2 & \lim _{x \rightarrow 0^{-}} f(x)=1 \\
\lim _{x \rightarrow 2} f(x)=\text { DNE } & \lim _{x \rightarrow 6^{+}} \frac{f(x-2)}{f\left(\frac{x}{3}\right)}=-1 \\
\lim _{x \rightarrow 3} f(x)=0 & \lim _{x \rightarrow 2^{-}} f(-x)=4 \\
\lim _{x \rightarrow 1^{-}} \frac{1}{f(x)}=0 & \lim _{h \rightarrow 0} \frac{f(1.5+h)-f(1.5)}{h}=4
\end{array}
$$

c. [2 points] Consider the function $G(x)=-f(x+3)$. Which of the following must be a vertical asymptote of $G(x)$? There is only one correct answer.

$$
x=-3 \quad x=-2 \quad x=-1 \quad x=1 \quad x=4
$$

