
1. [11 points] Below is a portion of the graph of the function j(x). Note that j(x) has a vertical asymptote at x = -5, and is linear on the intervals (-6, -5), (0, 2), and (4, 6).

a. [1 point] At which of the following values of x is the function j(x) continuous? Circle all correct answers.

$$x = -3$$
 $x = -2$ $x = 3$ $x = 4$ None of these

b. [6 points] Find the **exact** numerical value of each expression below, if possible. For any values that do not exist, including if they are limits that diverge to $\pm \infty$, write DNE.

i.
$$\lim_{x \to 3} j(x) =$$
_____ *iv.* $\lim_{x \to 0} \frac{j(5+x) - j(5)}{x} =$ _____

ii.
$$\lim_{x \to -3} j(x) =$$
 v. $\lim_{x \to 2^+} j(x) =$

- *iii.* $\lim_{x \to 4} j(x) =$ *vi.* $\lim_{x \to -5^+} \frac{1}{j(x)} =$ *_____*
- c. [2 points] Consider the function $k(x) = 2 \cdot j(\frac{1}{2}(x-9)) + 1$. Which of the following must be a vertical asymptote of k(x)? Circle the one correct answer.

$$x = -9$$
 $x = -5$ $x = -3$ $x = -1$ $x = 1$

d. [2 points] Given that j'(-4) = -2, find an equation of the line tangent to the graph of j(x) at the point (-4, 1).

Answer: