1. [11 points] Below is a portion of the graph of the function $j(x)$. Note that $j(x)$ has a vertical asymptote at $x=-5$, and is linear on the intervals $(-6,-5),(0,2)$, and $(4,6)$.

a. [1 point] At which of the following values of x is the function $j(x)$ continuous? Circle all correct answers.

$$
\begin{array}{llll}
x=-3 & x=-2 & x=3 & x=4 \quad \text { NONE OF THESE }
\end{array}
$$

b. [6 points] Find the exact numerical value of each expression below, if possible. For any values that do not exist, including if they are limits that diverge to $\pm \infty$, write DNE.
i. $\lim _{x \rightarrow 3} j(x)=\underline{2}$
iv. $\lim _{x \rightarrow 0} \frac{j(5+x)-j(5)}{x}=-1 / 2$
ii. $\lim _{x \rightarrow-3} j(x)=\underline{0}$
v. $\lim _{x \rightarrow 2^{+}} j(x)=1$
iii. $\lim _{x \rightarrow 4} j(x)=\underline{\text { DNE }}$
vi. $\lim _{x \rightarrow-5^{+}} \frac{1}{j(x)}=\underline{0}$
c. [2 points] Consider the function $k(x)=2 \cdot j\left(\frac{1}{2}(x-9)\right)+1$. Which of the following must be a vertical asymptote of $k(x)$? Circle the one correct answer.

$$
\begin{array}{llll}
x=-9 & x=-5 & x=-3 & x=-1
\end{array}
$$

d. [2 points] Given that $j^{\prime}(-4)=-2$, find an equation of the line tangent to the graph of $j(x)$ at the point $(-4,1)$.

Solution: An equation of the line tangent to the graph of $j(x)$ at $x=-4$ is given by

$$
y-j(-4)=j^{\prime}(-4)(x+4)
$$

Subbing in $j(-4)=1$ and $j^{\prime}(-4)=-2$, we get the equation $y-1=-2(x+4)$.

Answer:

$$
y=1-2(x+4), \text { or } y=-2 x-7
$$

