3. [4 points] Find positive constants \(a, b, \) and \(c \) such that the function

\[
f(x) = \begin{cases}
\ln(c \cdot e - x) & x \leq 0 \\
ax^3 + \pi & x > 0
\end{cases}
\]

is continuous and satisfies \(\lim_{x \to \infty} f(x) = 4 \). Show your work, and write your answers in exact form.

Solution: If \(b > 3 \) then \(\lim_{x \to \infty} f(x) = 0 \), and if \(b < 3 \) then \(\lim_{x \to \infty} f(x) = \infty \); therefore, since \(\lim_{x \to \infty} f(x) = 4 \), we know \(b = 3 \). Then, since \(b = 3 \), we know that

\[
4 = \lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{ax^3 + \pi}{x^3 + 1} = a.
\]

Finally, since \(f(x) \) is continuous at 0, the two parts of the piecewise definition of \(f(x) \) must agree at \(x = 0 \). Plugging \(x = 0 \) into both pieces, we get

\[
\ln(c e) = \ln(c) + 1 = \pi,
\]

so \(c = e^{\pi - 1} \).

Answers: \[a = 4, \quad b = 3, \quad c = e^{\pi - 1}\]

4. [5 points] Let

\[
Q(w) = w^w + \cos(6w - 1).
\]

Use the limit definition of the derivative to write an explicit expression for \(Q'(3) \). Your answer should not involve the letter \(Q \). Do not attempt to evaluate or simplify the limit. Write your final answer in the answer box provided below.

Solution:

\[
Q'(3) = \lim_{h \to 0} \frac{Q(3 + h) - Q(3)}{h} = \lim_{h \to 0} \frac{(3 + h)^3 + \cos(6(3 + h) - 1) - [3^3 + \cos(6 \cdot 3 - 1)]}{h}
\]

Answer: \[Q'(3) = \lim_{h \to 0} \frac{(3 + h)^3 + \cos(6(3 + h) - 1) - [3^3 + \cos(6 \cdot 3 - 1)]}{h}\]