7. [8 points] You and your friends are analyzing the vertical motion of the elevator in Mason Hall, with $H(m)$ giving the height, in feet, of the elevator m minutes after 1:00 pm. Below is a graph of $H^{\prime}(m)$, the derivative of $H(m)$.

a. [2 points] What is the speed of the elevator at 1:02 pm? Include units.

Answer:
21 feet per minute
b. [1 point] Find all times m for $0<m<5$ when the elevator is moving with its maximum speed. Give your answers as values(s) and/or interval(s) of m.

Answer:
$m=3$
c. [1 point] For which of the following intervals is the elevator moving downward over the entire interval? Circle all correct choices.

$(0.5,0.75)$	$(0.75,1) \quad(2.75,3) \quad(3,3.25) \quad$ NONE OF THESE

d. [1 point] Is the elevator's position at 1:02 pm above, below, or at the same level as its initial position at 1:00 pm? Circle the one correct answer.

$$
\begin{array}{lll}
\text { ABOVE } & \text { BELOW } & \text { SAME LEVEL }
\end{array}
$$

e. [1 point] Which of the following sentences best describes how the elevator is moving during the time interval $1.25 \leq m \leq 2$? Circle the one best choice.
(i) The elevator gets stuck for a moment while going down.
(iii) The elevator leaves a floor but returns to the same floor.
(ii) The elevator is moving up and down.
f. [2 points] Given that the elevator's position at 1:01 pm is 28 feet away from its position at 1:00 pm , find the average velocity of the elevator over the interval $0.5 \leq m \leq 1$. Include units.

Solution: From the graph of $H^{\prime}(m)$, we see that the elevator is stationary from $m=0$ to $m=0.5$, and then moves down from $m=0.5$ to $m=1$. So if at $1: 01 \mathrm{pm}$ it ends up 28 feet away from its position at 1 pm , it must have moved 28 feet downward from $m=0.5$ to $m=1$, which means ints average velocity over this interval is $\frac{-28}{0.5}=-56 \mathrm{ft} / \mathrm{min}$.

Answer: \qquad .

