- 7. [5 points] Suppose a(t) is the altitude in hundreds of meters above sea level of a certain hot air balloon t hours after 12pm noon on a sunny day. Carefully draw a plausible graph of a(t) on the given axes, assuming the following are true:
- the balloon lifts off the ground at 8am from a point that is 100 meters above sea level, and stays in the air until it lands at the same location at 4pm;
- the rate at which the balloon's altitude is changing is constant between 9am and 10am, and again between 2pm and 4pm;
- at 9:30am, the balloon is **ascending** twice as fast as it is **descending** at 3pm;
- the balloon spends at least one full hour at its maximum altitude of 700 meters.

8. [6 points] Let g(x) be the piecewise function defined by

$$g(x) = \begin{cases} \frac{-4(x+1)}{(x^2-1)(x+4)} & x < 0\\ \\ e^{A(x-1)} + \frac{B(x+1)^2(x-2)}{2(x-3)(x-2)^2} & x \ge 0 \end{cases}$$

where A and B are nonzero constants.

a. [3 points] List the x-coordinates of all vertical asymptotes of g(x).

Answer: x =_

b. [3 points] Find values of the constants A and B such that g(x) is continuous at x = 0 and g(x) has a **horizontal asymptote** at y = -3.