

2. [9 points] An environmentalist for a local county has found some data on the county's forest cover. In particular, letting the "forest cover", $F(t)$, be the percentage of the county (by area) that was covered by forest t years after the start of 2000, the environmentalist has the graph of $F'(t)$, the **derivative** of $F(t)$, as shown below.

a. [3 points] At the start of 2016, was the forest cover increasing or decreasing? Circle your answer below. At approximately what rate? *Include units.*

INCREASING DECREASING at a rate of \approx **2% per year**

b. [2 points] During which of the following years, if any, did the amount of forest cover appear to remain constant for the entire year? Circle **all** correct answers.

2001 2010 2018 2020 NONE OF THESE

c. [1 point] Which **one** of the following statements **best** describes the forest cover during 2004? Circle the numeral of your answer.

- The amount of forest cover increased faster and faster as the year went on.
- The amount of forest cover was increasing, but grew more slowly as the year went on.
- The amount of forest cover increased at a constant rate.

d. [3 points] At which of the following times t did the county have the most forest cover? Circle the **one** correct answer, then **explain** in *two sentences or fewer* how you know.

$t = 0$ $t = 3$ $t = 14$ $t = 20$ $t = 22$

Explanation:

Solution: Since this is the graph of F' , when the graph is positive, the amount of forest cover is growing. It therefore grows significantly from 2003 until 2020 (after being constant from 2000-2003), and then only decreases by a small amount from 2020-2022, so 2020 must be when the forest cover was greatest.