- 3.) (12 pts) (a) On the axes below, sketch a graph of a single *continuous* function, y = f(x), which has *all* of the following features:
 - f(0) = -3
 - f(-2) = 0 and f(3) = 0
 - f is <u>decreasing</u> for x < 0
 - f is <u>increasing</u> for x > 0
 - f is <u>concave up</u> for x < 2
 - f is <u>concave down</u> for x > 2
 - f(x) fi 4 as x fi ¥
 - (b) Is the function you drew in part (a) *invertible*? Explain why or why not.

4.) Data from three functions is shown in the table below. One function is linear, one is a power function, and one is neither of these.

x	-2	0	2	4	6	8
f(x)	16.5	20	24.2	29.3	35.4	42.9
g(x)	17.6	20	22.4	24.8	27.2	29.6
h(x)	4.4	0	4.4	17.6	39.6	70.4

(a) (6 pts) Determine a formula for the linear function. [Be certain to use the appropriate function name—*i.e.*, *f*, *g*, or *h*, from the table.]

(b) (6pts) Determine a formula for the power function. [Again use the correct function name.]