(12 pts) (a) On the axes below, sketch a graph of a single continuous function, y = f(x), which 3.) has all of the following features:

Data from three functions is shown in the table below. One function is linear, one is a power 4.) function, and one is neither of these.

×	-2	0	2	4	6	8	Ι
<u>f(x)</u>	16.5	20	24.2	29.3	35.4	42.9	(netshir)
<u>g(x)</u>	17.6	20	22.4	24.8	27.2	29.6	1- linear
h(x)	4.4	0	4.4	17.6	39.6	70.4	Run

(a) (6 pts) Determine a formula for the linear function. [Be certain to use the appropriate function name—i.e., f, g, or h, from the table.}

$$\frac{2}{3} = \frac{1}{3} \frac{$$

(b) (ops) Determine a termula for the power function. [Again use the correct function name.]

$$\begin{aligned}
f & Can + lo a Goutelle terre, (since + lo) = zo), \\
& 2ug A! + 4 = k 2^{P} = 12, b = k 4^{P} zo \\
& = \frac{17.6}{4.4} = \frac{k 4^{P}}{k 2^{P}} = 2^{P} \frac{A(k)}{k(2)} = \frac{1}{2} \frac{1}{2} \frac{2}{2} \frac{1}{2} \frac$$

- ----