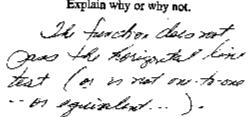
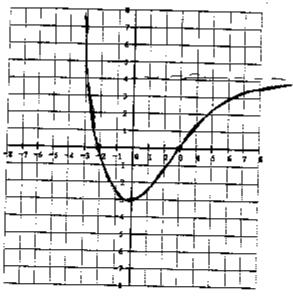
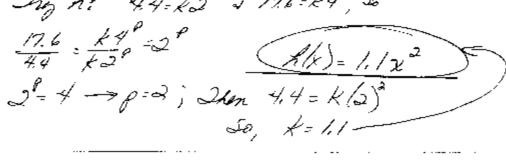

(12 pts) (a) On the axes below, sketch a graph of a single continuous function, y = f(x), which has all of the following features:




•
$$f(-2) = 0$$
 and $f(3) = 0$

•
$$f$$
 is decreasing for $x < 0$

- f is increasing for x > 0
- f is concave up for x < 2
- f is concave down for x > 2
- $f(x) \rightarrow 4$ as $x \rightarrow \infty$


4.) Data from three functions is shown in the table below. One function is linear, one is a power function, and one is neither of these.

_,x	-2	0	2	4	6	8	
f(x)	<u>16.5</u>	20	24.2	29.3	35.4	42.9	
g(x)	17.6	20	22.4	24.8	27.2	29.6	
h(x)	4.4	0	4.4	17.6		70.4	

(a) (6 pts) Determine a formula for the linear function. (Be certain to use the appropriate function name—i.e., f, g, or h, from the table.)

(b) (6pts) Determine a formula for the power function. [Again use the correct function name.]

$$4 = \frac{17.6}{4.4} = \frac{k4^{\circ}}{k2^{\circ}} = 2^{\circ}$$

