1. (2 points each) True or False. Circle True only if the statement is always true.

(a) The inverse function of \(g(t) = (1.04)^t \) is \(g^{-1}(t) = \frac{1}{(1.04)^t} \).
\(\text{T} \quad \text{F} \)

(b) \(\ln(2^x + 2^{-x}) = 0 \)
\(\text{T} \quad \text{F} \)

(c) If \(22 = 18e^{2k} \), then \(k = 1.003 \).
\(\text{T} \quad \text{F} \)

(d) \(\log(67.34(1.03)^t) = t(\log(67.34) + \log(1.03)) \)
\(\text{T} \quad \text{F} \)

(e) The graph of the function \(s(t) = 2 \sin(2t + 3) \) is the graph of the function \(y = 2 \sin(2t) \) shifted 3 units to the left.
\(\text{T} \quad \text{F} \)

(f) If \(f' \) is increasing, then \(f \) is increasing.
\(\text{T} \quad \text{F} \)

2. (6 points) A function \(f(x) \) has values given in the following table. Estimate the value of its derivative at \(x = 1 \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>.9</th>
<th>.98</th>
<th>.996</th>
<th>1.0</th>
<th>1.004</th>
<th>1.02</th>
<th>1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>.7969</td>
<td>.8342</td>
<td>.8410</td>
<td>.8427</td>
<td>.8444</td>
<td>.8508</td>
<td>.8802</td>
</tr>
</tbody>
</table>

\[
f'(1) \approx \frac{f(1.004) - f(1)}{0.004} = \frac{0.8444 - 0.8427}{0.004} = 42.5
\]

\[
f'(1) \approx \frac{f(1.004) - f(0.996)}{0.008} = \frac{0.8444 - 0.8410}{0.008} = 42.5
\]