6. (12 points) For this problem f is differentiable everywhere.
(a) Let $g(x)=f(x-2)$. Describe the graph of $g(x)$ in terms of the graph of $f(x)$.

The graph of g is the graph of f shifted to the right 2 units.
(b) If $f^{\prime}(1)=6$, what is $g^{\prime}(3)$? Don't do any calculations here, use the geometry of the situation from part (a) to arrive at your answer.

Since we have just shifted the graph of f to the right by 2 , we must have $g^{\prime}(3)=f^{\prime}(1)=6$. So we are looking at the slope of the tangent line to f at $x=1$, only shifted along with the graph of g.
(c) State the limit definition of the derivative for the function f.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

(d) Let $j(x)=f(x)+10$. Use the limit definition of the derivative to calculate the derivative of j in terms of the derivative of f.

$$
\begin{aligned}
j^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{j(x+h)-j(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(f(x+h)+10)-(f(x)+10)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =f^{\prime}(x) .
\end{aligned}
$$

