9. (10 points) The graph of $f^{\prime}(x)$ (i.e., the derivative of f) is given below. Use the graph to answer the following questions:

(a) For which intervals is f increasing?
f is increasing when its derivative is positive, so for $0<x<3$ and $7<x<9$.
(b) For which intervals is $f^{\prime \prime}$ negative?
$f^{\prime \prime}$ is negative when f^{\prime} is decreasing, so for $1<x<5$ and $8<x<9$.
(c) For which value(s) of x (if any) does f have a local maximum?
[Note: This was excluded from grading.] f has a local maximum at a value a when f^{\prime} is positive for $x<a$ and negative for $x>a$. So f has a local maximum when $x=3$.
(d) For which value(s) of x (if any) does f switch from concave up to concave down?
f will switch from concave up to concave down when the second derivative switches from being positive to being negative, ie., when the derivative switches from increasing to decreasing, so at $x=1$ and $x=8$.
