2. ($7+2+3$ points) (a) On the axes below, sketch a graph of a single, continuous, differentiable function, g, with all of the following properties.

- $g(0)=2$
- g^{\prime} is negative for $x<0$ and $x>4$
- g is increasing for $0<x<4$
- $g^{\prime \prime}$ is positive for $x<3$
- $g^{\prime}(4)=0$
- $g(x) \rightarrow 5$ as $x \rightarrow \infty$

(b) What is $\lim _{x \rightarrow-\infty} g(x)$?

$$
+\infty
$$

(c) If $g^{\prime}(1)=1 / 2$, is it possible to have $g^{\prime}(2)=1 / 4$? Explain.

No. Since g is increasing for $0<x<4$ and concave up for $x<3$, if $g^{\prime}(1)=1 / 2$ then $g^{\prime}(2)>1 / 2$.

