7. (14 points) Kevin's interest in chocolate fluctuates during the year. His girlfriend works at a chocolate factory, and sometimes he gets a chocolate overload. Even at the best of times, he wouldn't gauge his level of "chocolate interest" as more than, say, a 75% interest. Assume that Kevin's interest in chocolate is given by the graph of $I(t)$ shown below, where t is in months and $t=0$ is January 1st, 2004.

(a) Assuming I is a trigonometric function, find a formula for I in terms of t.

$$
\begin{aligned}
& \text { midline: } I=0.4 \\
& \text { amplitude: } A=0.35 \\
& \text { period }=6 \Rightarrow B=\frac{2 \pi}{6}=\frac{\pi}{3} \\
& \text { So, one possible equation for } I \text { is } \\
& \qquad I(t)=0.35 \cos \left(\frac{\pi}{3} t\right)+0.4
\end{aligned}
$$

(b) List all months of 2004 in which Kevin's interest in chocolate was increasing.

Notice that the function is increasing between $t=3$ and $t=6$ as well as between $t=9$ and $t=12$. We're told in the problem that $t=0$ corresponds to January 1, 2004. So, the function is increasing during the following months:

April, May, June and October, November, December.
(c) For what value(s) of t during 2004 was Kevin's interest in chocolate increasing the fastest?

$$
t=4.5 \text { and } t=10.5
$$

