5. (2 points each) Circle "True" or "FalSe" for each of the following problems. Circle "True" only if the statement is always true. No explanation is necessary.
(a) If $g(x)$ is an everywhere differentiable function, then so is $f(x)=a g(x-h)+b$, where a, b and h are constants.

True False
(b) Suppose $H(t)$ and $T(t)$ are differentiable functions, and $T(t)=H(t)-4$. Then H and T have the same derivative at each t.

True False
(c) If l and m are inverse functions and the graph of m crosses the line $y=x$, the graph of l must also cross this line at the same point.

True False
(d) If b is a positive constant, then $\lim _{h \rightarrow 0} \frac{\sqrt{b+h}-\sqrt{b}}{h}=0.5 b^{-1 / 2}$.

True False
(e) If $s(t)$ gives the position of an object moving at a constant velocity, then the object's instantaneous velocity at $t=a$ is equal to $\frac{s(b)-s(a)}{b-a}$ for all $a \neq b$.

True False
(f) If t is a differentiable concave up function, then $t^{\prime}(a)<\frac{t(b)-t(a)}{b-a}$ for all $a<b$.

True False
(g) For any constant a, the equation $a x=e^{2 \ln x}+a^{2}$ has exactly one solution.

True False

