2. (16 points) In each case below find a possible formula for the function described.
(a) (4 pts.) Upon looking at her watch a student leaves behind a freshly made cappuccino in a study hall. The coffee is initially $92^{\circ} \mathrm{F}$ and cools at a rate of 2% per hour. The student knows that, if left there to cool forever, the cappuccino will eventually approach the temperature of the study hall which is $67^{\circ} \mathrm{F}$.

- $y=(92-67)(0.98)^{t}+67$, or $y=25(0.98)^{t}+67$
(b) (4 pts.) A sinusoidal function that fits the following table of values:

$$
\begin{array}{l||ccccc}
x & 0 & 1.5 & 3 & 4.5 & 6 \\
\hline s(x) & 100 & 300 & 500 & 300 & 100
\end{array}
$$

- $y=-200 \cos \left(\frac{\pi}{3} x\right)+300$
(c) (3 pts.) The length, L in feet, of a scarf you are knitting is a linear function of the number of rolls, r, of yarn used to knit the scarf, and you know $L^{\prime}(3)=0.5$.
- $L(r)=0.5 r$
(d) (5 pts.) This rational function has only two zeros, $x=-2$ and $x=3$. It has only one vertical asymptote at $x=0$ and a horizontal asymptote of $y=4$.
- $y=\frac{4(x+2)(x-3)}{x^{2}}$

